Telegram Group & Telegram Channel
🔥 Огонь и горение в космосе 💫

На Земле под действием гравитации нагретый воздух поднимается и расширяется, и огонь приобретает форму капли. В условиях микрогравитации на МКС огонь имеет форму шара. Сгорающее вещество встречает молекулы кислорода, свободно перемещаясь во всех направлениях, создает сферическое пламя. Голубой цвет обусловлен образованием небольшого количества сажи, которая при низкой температуре светится только в инфракрасном диапазоне.

В отсутствие гравитации пламя приобретает форму сферы. Это объясняется тем, что в условиях невесомости нет восходящего движения воздуха и конвекции тёплых и холодных его слоёв не происходит. Пламени не хватает для горения притока свежего воздуха, содержащего кислород, поэтому оно получается меньше и холоднее. Привычный оранжевый цвет пламени вызван свечением частичек сажи, которые поднимаются вверх с горячим потоком воздуха. В невесомости пламя приобретает голубой цвет, потому что сажи образуется мало, а та, что есть, из-за пониженной температуры будет светиться только в инфракрасном диапазоне. И горит оно недолго: отсутствие конвекции неизбежно приводит к самозатуханию пламени. Воздух вокруг сферы рано или поздно насыщается продуктами горения настолько, что блокируют доступ молекул кислорода и пламя гаснет. Поэтому на космических кораблях и орбитальных станциях при возгорании в первую очередь отключается система искусственной циркуляции воздуха.

Первый серьезный эксперимент по изучению горения в условиях невесомости провели наши соотечественники на борту станции «Мир». Для эксперимента использовались восковые свечи. В обычных условиях каждая свеча сгорала примерно за 10 минут, однако в космических условиях это время увеличилось до 3/4 часа. При этом пламя каждой свечи имело голубоватый цвет и было едва заметно, так что его просто не удавалось снять на видеокамеру. Для доказательства процесса горения в район пламени вносились кусочки воска. По их оплавлению и можно было утверждать, что происходит процесс горения. Этот результат нельзя было назвать неожиданным, так как в условиях невесомости нет постоянного притока кислорода за счет замены более легкого нагретого воздуха, на более плотный холодный. В космосе и холодный, и теплый воздух ничего не весят, поэтому теплый воздух и не стремится вверх. В таких условиях горение возможно исключительно за счет молекулярной диффузии или с помощью принудительной вентиляции.

Проводили свои эксперименты по горению на космических челноках и американцы. Они использовали шарики газовой смеси, которые в земных условиях быстро сгорали. А вот в космосе эти шарики горели по несколько часов, причем энергия, выделяемая при сгорании, была настолько мала, что могла фиксироваться только точными приборами. Наиболее интересным и показательным опытом по горению в космосе оказался эксперимент FLEX, который состоялся в 2011 году на борту Международной космической станции. В специальных камерах поджигались пузырьки гептана и метанола. В земных условиях за счет гравитации и тяги пламя имеет вытянутую вверх структуру, в чем несложно убедиться, если зажечь спичку или свечу. Однако в условиях микрогравитации огонь, к удивлению ученых, повел себя иначе. Вместо привычной вытянутой формы пламя оказалось шарообразным, причем имело ярко выраженный голубой оттенок. До сих пор все было ожидаемо, поскольку топливо с кислородом в невесомости встречаются в относительно тонком сферическом слое. А затем началось неожиданное — после выгорания кислорода в этом сферическом слое пламя не погасало, как ожидалось, а переходило в стадию холодного горения. В этой стадии огонь горит настолько слабо, что его увидеть невозможно. Однако, стоит доставить к очагу горения кислород и топливо, как пламя вспыхнет с новой силой. Стадия холодного горения гептана и метанола, наблюдаемая на МКС, имела температуру от 227 до 527 градусов, при этом выделяются гораздо более токсичные угарный газ (сказывается недостаток кислорода) и формальдегид. #physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/physics_lib/14064
Create:
Last Update:

🔥 Огонь и горение в космосе 💫

На Земле под действием гравитации нагретый воздух поднимается и расширяется, и огонь приобретает форму капли. В условиях микрогравитации на МКС огонь имеет форму шара. Сгорающее вещество встречает молекулы кислорода, свободно перемещаясь во всех направлениях, создает сферическое пламя. Голубой цвет обусловлен образованием небольшого количества сажи, которая при низкой температуре светится только в инфракрасном диапазоне.

В отсутствие гравитации пламя приобретает форму сферы. Это объясняется тем, что в условиях невесомости нет восходящего движения воздуха и конвекции тёплых и холодных его слоёв не происходит. Пламени не хватает для горения притока свежего воздуха, содержащего кислород, поэтому оно получается меньше и холоднее. Привычный оранжевый цвет пламени вызван свечением частичек сажи, которые поднимаются вверх с горячим потоком воздуха. В невесомости пламя приобретает голубой цвет, потому что сажи образуется мало, а та, что есть, из-за пониженной температуры будет светиться только в инфракрасном диапазоне. И горит оно недолго: отсутствие конвекции неизбежно приводит к самозатуханию пламени. Воздух вокруг сферы рано или поздно насыщается продуктами горения настолько, что блокируют доступ молекул кислорода и пламя гаснет. Поэтому на космических кораблях и орбитальных станциях при возгорании в первую очередь отключается система искусственной циркуляции воздуха.

Первый серьезный эксперимент по изучению горения в условиях невесомости провели наши соотечественники на борту станции «Мир». Для эксперимента использовались восковые свечи. В обычных условиях каждая свеча сгорала примерно за 10 минут, однако в космических условиях это время увеличилось до 3/4 часа. При этом пламя каждой свечи имело голубоватый цвет и было едва заметно, так что его просто не удавалось снять на видеокамеру. Для доказательства процесса горения в район пламени вносились кусочки воска. По их оплавлению и можно было утверждать, что происходит процесс горения. Этот результат нельзя было назвать неожиданным, так как в условиях невесомости нет постоянного притока кислорода за счет замены более легкого нагретого воздуха, на более плотный холодный. В космосе и холодный, и теплый воздух ничего не весят, поэтому теплый воздух и не стремится вверх. В таких условиях горение возможно исключительно за счет молекулярной диффузии или с помощью принудительной вентиляции.

Проводили свои эксперименты по горению на космических челноках и американцы. Они использовали шарики газовой смеси, которые в земных условиях быстро сгорали. А вот в космосе эти шарики горели по несколько часов, причем энергия, выделяемая при сгорании, была настолько мала, что могла фиксироваться только точными приборами. Наиболее интересным и показательным опытом по горению в космосе оказался эксперимент FLEX, который состоялся в 2011 году на борту Международной космической станции. В специальных камерах поджигались пузырьки гептана и метанола. В земных условиях за счет гравитации и тяги пламя имеет вытянутую вверх структуру, в чем несложно убедиться, если зажечь спичку или свечу. Однако в условиях микрогравитации огонь, к удивлению ученых, повел себя иначе. Вместо привычной вытянутой формы пламя оказалось шарообразным, причем имело ярко выраженный голубой оттенок. До сих пор все было ожидаемо, поскольку топливо с кислородом в невесомости встречаются в относительно тонком сферическом слое. А затем началось неожиданное — после выгорания кислорода в этом сферическом слое пламя не погасало, как ожидалось, а переходило в стадию холодного горения. В этой стадии огонь горит настолько слабо, что его увидеть невозможно. Однако, стоит доставить к очагу горения кислород и топливо, как пламя вспыхнет с новой силой. Стадия холодного горения гептана и метанола, наблюдаемая на МКС, имела температуру от 227 до 527 градусов, при этом выделяются гораздо более токсичные угарный газ (сказывается недостаток кислорода) и формальдегид. #physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib

BY Physics.Math.Code


Share with your friend now:
tg-me.com/physics_lib/14064

View MORE
Open in Telegram


Physics Math Code Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Physics Math Code from us


Telegram Physics.Math.Code
FROM USA